Mathematical Morphology and Applications - Mid-Sem Exam

BMath(Hons.) Third Year

February 17, 2017

Instructions: There are 7 questions altogether. Marks corresponding to each question is indicated in bold. Answer as many as you can. Maximum score: 40 marks. Maximum time: 3 hrs.

- (1) Let $Y \subset \mathbb{R}$ be a fixed set and $\mathcal{P}(\mathbb{R})$ denote the power set of \mathbb{R} . A transformation $\Psi : \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ is defined as $\Psi(X) = X \cup Y$.
 - (a) Is this transformation increasing, extensive, idempotent?
 - (b) Does there exist a dual transformation? If so, indicate it.

[1+1+1+1]

- (2) An incorrect implementation of in-place dilation w.r.t $B = \{(-1,0), (0,-1), (0,0), (0,1), (1,0)\}$ of a 2-D binary image X is given by algorithm 1 (assuming a square grid).
 - (a) Why does algorithm 1 yield incorrect results?
 - (b) Assuming that X is a $n \times n$ 2-D image, modify algorithm 1 or provide your own algorithm to yield a correct implementation which has $O(n^2)$ time complexity and uses O(1) auxiliary space. You will have to justify the correctness of the algorithm along with the time and space complexities.

[3+6]

```
Algorithm 1 Incorrect Dilation Algorithm
 1: procedure DILATE(X, B)
                                                                                     \triangleright The dilation of X by B
       l \leftarrow X.shape[0] \text{ and } b \leftarrow X.shape[1]
 2:
                                                             \triangleright Identify the length and width of the image X
3:
       for i < l do
                                                                                   ▶ Iterating over all the rows
 4:
           for j < b do
                                                                               ▶ Iterating over all the columns
               if X[i][j] == 1 then
 5.
                                                                           ▶ Identifying the foreground pixels
 6:
                   if i > 0 then
                                                            ▶ Lines 6-13: Checking the boundary conditions
 7:
                      X[i-1][j] = 1
                   if j > 0 then
 8:
9:
                      X[i][j-1] = 1
10:
                   if i < l - 1 then
                      X[i+1][j] = 1
11:
                   if j < b-1 then
12:
                      X[i][j+1] = 1
13:
       return X
14:
                                                                               \triangleright Outputs the dilated image X
```

(3) Prove that an elementary hexagon may be generated by three successive dilations of a point by three judiciously chosen segments. Then, deduce an algorithm that allows to obtain the dilation by a hexagon.

[3+3]

Figure 1: A smeared image (source: Quora)

- (4) The notion of opening can be defined in a more general way. An algebraic opening is any transformation that is increasing, idempotent and anti-extensive. The notion of closing is defined by duality: increasing, idempotent and extensive.
 - (a) Is the operation consisting in extracting particles (binary case) with at least one hole an opening? Justify.
 - (b) Consider a family (ϕ_i) of closings (gray scale case). Prove that $\phi = \inf_i \phi_i$ is a closing.

[3+3]

- (5) Suppose you are working with five operators namely Dilation, Erosion, Opening, Closing and Identity on a binary image. Assume that the same structuring element is used across all the operators.
 - (a) Why are the above conditions insufficient for a complete ordering (w.r.t inclusion) of these operators? Illustrate with explicit examples.
 - (b) Provide a sufficient condition so that they admit a complete ordering. Also, indicate the complete ordering.

[3+2+6]

- (6) Suppose that you have a smeared image of a hand-written text document (see Fig 1). Which among the following procedures would enhance the quality of the document better? Explain.
 - · Opening
 - Thinning followed by Pruning

[4]

(7) Prove that the reconstruction by geodesic dilation of the erosion of f (resp. X) of size n by the structuring element B conditionally to f (resp. X) is an algebraic opening (assume that the center of the structuring element B is a point of B).

[4]